Normal Mapping with Hardware Skinning and Specular         Combined normal mapping and hardware skinning

There are a lot of normal mapping and displacement mapping examples around here, but I found that none of them would work correctly with hardware skinning. To help those who face the same problem, here it is.

Usage


just add the material animatedNormalSpecular to your object. The hardware skinning is setup for 3 bones per vertex, which can easily be changed.

It also uses the shadow program HardwareSkinningFourShadow which is from the ogre samples, if you have the ogre media samples in your resources path already its not a problem, otherwise, find it!

Material file

vertex_program AnimatedNormalSpecular_VP hlsl
 {
    source animatedNormalSpecular.hlsl
    entry_point main_vp
    target vs_2_0
    column_major_matrices false		//required for hlsl skinning
    
    includes_skeletal_animation true
 
    default_params
    {
       param_named_auto worldviewprojmatrix worldviewproj_matrix
       param_named_auto light_position light_position_object_space 0
       param_named_auto eye_position camera_position_object_space
       
       param_named_auto worldMatrix3x4Array world_matrix_array_3x4
       param_named_auto viewProjectionMatrix viewproj_matrix
       param_named_auto invworldmatrix inverse_world_matrix
    }
 }

fragment_program AnimatedNormalSpecular_FP hlsl
 {
 	source animatedNormalSpecular.hlsl
 	entry_point main_fp
 	target ps_2_0
 	
 	default_params
 	{ 
 		param_named_auto lightDiffuse light_diffuse_colour 0
 		param_named_auto ambientLight ambient_light_colour
 		param_named_auto specularLight light_specular_colour 0
 		param_named specular_power float 64
 		param_named bumpiness float 1
 	}
 }

material animatedNormalSpecular
 {
 	technique
 	{
 		pass Single Pass
 		{
 			vertex_program_ref AnimatedNormalSpecular_VP
 			{
 			}
 
 			fragment_program_ref AnimatedNormalSpecular_FP
 			{
 			}
 			shadow_caster_vertex_program_ref HardwareSkinningFourShadow		//this part is in the ogre samples somewhere
 			{
 			}
 			
 			//diffuse map
 			texture_unit
 			{
 				texture_alias base_map
 				texture diffuse.tga
 				filtering linear linear linear
 			}
 
 			//normal map
 			texture_unit
 			{
 				texture_alias bump_map
 				texture diffuse_normal.tga
 				filtering linear linear linear
 			}
 			
 		            // specular map
 			  texture_unit specular_map
 			  {
 				texture_alias specular_map
 				texture specular.png
 			  }
 
 		}
 
 	}
 }

animatedNormalSpecular.hlsl

void main_vp(    
     float4 position : POSITION,
     float2 uv       : TEXCOORD0, 
     float3 normal   : NORMAL,
     float3 tangent  : TANGENT0,
    
     float4 blendIdx : BLENDINDICES,
     float4 blendWgt : BLENDWEIGHT,
 		
     out float4 oPosition    : POSITION,
     out float2 oUV          : TEXCOORD0,
     out float3 oLightVector : TEXCOORD1,
     out float3 oHalfAngle   : TEXCOORD2,
 
     uniform float4x4 worldviewprojmatrix,
     uniform float4   light_position,
     uniform float4   eye_position,
     uniform float3x4 worldMatrix3x4Array[60],
     uniform float4x4 viewProjectionMatrix,
     uniform float4x4 invworldmatrix
  ) {
     // Calculate the pixel position using the perspective matrix.
     oUV = uv;   
 	
     // transform by indexed matrix
     float4 blendPos = float4(0,0,0,0);
     int i;
     for (i = 0; i < 3; ++i)
     {
         blendPos += float4(mul(worldMatrix3x4Array[blendIdx[i]], position).xyz, 1.0) * blendWgt[i];
     }
     // view / projection
     oPosition = mul(viewProjectionMatrix, blendPos);
 
 
     // transform normal
     float3 newnormal = float3(0,0,0);
     for (i = 0; i < 3; ++i)
     {
         newnormal += mul((float3x3)worldMatrix3x4Array[blendIdx[i]], normal) *      blendWgt[i];
     }
     newnormal = mul((float3x3)invworldmatrix, newnormal); 
     newnormal = normalize(newnormal);
 
     // transform tangent
     float3 newtangent = float3(0,0,0);
     for (i = 0; i < 3; ++i)
     {
         newtangent += mul((float3x3)worldMatrix3x4Array[blendIdx[i]], tangent) *      blendWgt[i];
     }
     newtangent = mul((float3x3)invworldmatrix, newtangent); 
     newtangent = normalize(newtangent);
 
 
 
 
     float3 binormal = cross(newtangent, newnormal);
     float3x3 rotation = float3x3(newtangent, binormal, newnormal);
 
     // Calculate the light vector in object space,
     // and then transform it into texture space.
     float3 temp_lightDir0 = normalize(light_position.xyz -  (blendPos * light_position.w));
     temp_lightDir0 = normalize(mul(rotation, temp_lightDir0));
     oLightVector = temp_lightDir0;
 
 
     // Calculate the view vector in object space,
     // and then transform it into texture space.
     float3 eyeDir = normalize(eye_position - blendPos);
     eyeDir = normalize(mul(rotation, eyeDir.xyz));
 
     // Calculate the half angle
     oHalfAngle = oLightVector + eyeDir;
 
 }
 
 
 
 
 
 float4 lightDiffuse ;
 float4 ambientLight;
 float4 specularLight;
 float specular_power;
 float bumpiness;
 sampler base_map;
 sampler bump_map;
 sampler specular_map;
 
 struct PS_INPUT_STRUCT
 {
    float2 uv:     TEXCOORD0;
    float3 light_vector: TEXCOORD1;
    float3 half_angle:   TEXCOORD2;
 };
 
 struct PS_OUTPUT_STRUCT
 {
    float4 color0:       COLOR0;
 };
 
 PS_OUTPUT_STRUCT main_fp( PS_INPUT_STRUCT psInStruct )
 {
    PS_OUTPUT_STRUCT psOutStruct; 
 
   float3 base = tex2D( base_map, psInStruct.uv );
   float3 bump = tex2D( bump_map, psInStruct.uv );
   float specularLevel = tex2D(specular_map, psInStruct.uv).r;
 
   //normalise
   float3 normalized_light_vector = normalize( psInStruct.light_vector );
   float3 normalized_half_angle = normalize( psInStruct.half_angle );
    
   // "Smooth out" the bump based on the bumpiness parameter.
   // This is simply a linear interpolation between a "flat"
   // normal and a "bumped" normal.  Note that this "flat"
   // normal is based on the texture space coordinate basis.
   float3 smooth = { 0.5f, 0.5f, 1.0f };
   bump = lerp( smooth, bump, bumpiness );
   bump = normalize( ( bump * 2.0f ) - 1.0f );
 
   // These dot products are used for the lighting model
   // equations.  The surface normal dotted with the light
   // vector is denoted by n_dot_l.  The normal vector
   // dotted with the half angle vector is denoted by n_dot_h.
   float4 n_dot_l = dot( bump, normalized_light_vector );
   float4 n_dot_h = dot( bump, normalized_half_angle );
 
   // Calculate the resulting pixel color,
   // based on our lighting model.
   // Ambient + Diffuse + Specular
   psOutStruct.color0.rgb =
      ( base * ambientLight) +
      ( base * lightDiffuse * max( 0, n_dot_l ) ) +
      ( specularLight * specularLevel * pow( max( 0, n_dot_h ), specular_power ) );
   psOutStruct.color0.a = 1.0f; //** Set the alpha component manually
 
   return psOutStruct;
 }


Alias: Normal_Mapping_with_Hardware_Skinning_and_Specular